恒星通常是在星际气体中诞生的。在宇宙中,当星际气体的密度增加到一定程度时,由于其内部引力的增长大于气体压力的增长,这团气体云就开始收缩。这样的倾向一开始,其自身引力使巨量物质的密度普遍增大。巨大质量的星际物质开始变得不稳定。这些巨量的星际气体与尘埃坍缩进行得越来越迅猛,开始分裂形成较小的云团,密度也增大了许多。这些较小的云团最终将各自成为一颗恒星。由于星际物质的质量通常非常巨大,通常在太阳的一万倍以上,所以恒星总是一下子一大批地降生。
如果有一团星际气体超过通常的星际物质(每立方厘米一个氢原子)的密度,达到每立方厘米已达六万个氢原子。开始时这团气体是透光的,发出的光热辐射不受周围物质的牵制,畅行无阻地传到外面。物质以自由落体的形式落到中心,在中心区积聚起来。本来质量均匀分布的一团物质,变成了越往里密度越大的气体球。随着密度的增大,中心附近的重力加速度越来越大,内部区域物质的运动速度的增长表现得最为突出。开始几乎所有的氢以分子的形式存在,气体的温度也很低,总不见升高,这是因为它仍然过于稀薄,一切辐射都能往外穿透,溃缩着的气体球受到的加热作用并不显著。经历几十万年后,中心区的密度逐渐变大,在那里,气体对于辐射来说变得不透明了。这时核心便开始升温,随着温度的上升,压力开始变大,坍缩逐渐停止。这个特密中心区的半径通常和木星轨道半径相近,而它所含的质量只及整个坍缩过程中涉及的全部物质的5%。物质不断落到内部的小核上,它带来的能量在物质撞击到核心上时又成为辐射而放出。与此同时,核心在不断缩小,并变得越来越热。
温度达到二千度左右时,氢分子开始分解成为原子。核心开始再度收缩,收缩时释放出的能量将把所有氢分子都分解为原子。这个新生的核心比今天的太阳稍大一些,不断向中心落下的外围物质最终都要落到这个核心上,一颗质量和太阳一样的恒星就要诞生了。
人们将这样的天体称为“原恒星”,它的辐射消耗主要由下落到它上面的物质的能量来补充。由于密度和温度在升高,原子渐渐地丢失了它们的外层电子。落下的气体和尘埃形成了厚厚的外壳,使光无法穿透。直至越来越多的下落物质和核心联成一体时,外壳才透光,发光的星体突然露出来。其余的云团物质还在不断向它落下,密度还在不断增大,内部温度也在上升。直至中心温度达到一千万度发生聚变。一颗原始的恒星诞生了。
在反抗引力的持久斗争中,恒星的主要武器是核能。它的核心就是一颗大核弹,在那里不断地爆炸。正是因为这种核动力能自我调节得几乎精确地与引力平衡,恒星才能在长达数十亿年的时间里保持稳定。
热核反应发生在极高温度的原子核之间,因而涉及物质的基本结构。在太阳这样的恒星中心,温度达到一千五百万开氏度,压强则为地球大气压的三千亿倍。在这样的条件下,不仅原子失去了所有电子而只剩下核,而且原子核的运动速度也是如此之高,以至于能够克服电排斥力而结合起来,这就是核聚变。
恒星是在氢分子云的中心产生的,因而主要由氢组成。氢是最简单的化学元素,它的原子核就是一个带正电荷的质子,还有一个带负电荷的电子绕核旋转。恒星内部的温度高到使所有电子都与质子分离,而质子就像气体中的分子在所有方向上运动。由于同种电荷互相排斥,质子就被一种电“盔甲”保护着,从而与其他质子保持距离。但是,在年轻恒星核心的一千五百万开氏度的高温下,质子运动得如此之快,以至于当它们相互碰撞时就能够冲破“盔甲”而粘合在一起,而不是像橡皮球那样再弹开。
四个质子聚合,就成为一个氦核。氦是宇宙中第二位最丰富的元素。氦核的质量小于它赖以形成的四个质子质量之和。这个质量差只是总质量的千分之七,但是这一点质量损失转化成了巨大的能量